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Summary. Best Linear Prediction (BLP) was used to pre- 
dict breeding values for 1,396 parents from progeny test 
data in an operational slash pine breeding program. BLP 
rankings of parents were compared to rankings of aver- 
aged standard scores, a common approach in forestry. 
Using BLP rankings, selection of higher ranking parents 
tends to choose parents in a larger number of more pre- 
cise progeny tests. The trend is the opposite with stan- 
dard scores; higher ranking parents tend to be those in 
fewer, less precise tests. BLP and a related methodology, 
Best Linear Unbiased Prediction (BLUP), were devel- 
oped by dairy cattle breeders and have not been used 
widely outside of animal breeding for predicting breeding 
values from messy progeny test data. Application of 
either of these techniques usually requires simplifying 
assumptions to keep the problem computationally trac- 
table. The more appropriate technique for a given appli- 
cation depends upon which set of assumptions are better 
for the given problem. An assumption of homogeneous 
genetic and error variances and covariances, generally 
made by animal breeders when applying BLUP, was 
inappropriate for our data. We employed an approach 
that treated fixed effects as known and treated the same 
trait measured in different environments as different 
traits with heterogeneous variance structures. As tree im- 
provement programs become more complex, the ease 
with which BLP and BLUP handle messy data and in- 
corporate diverse sources of information should make 
these techniques appealing to forest tree breeders. 
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Introduction 

As in breeding programs of many species, most forest tree 
improvement programs around the world employ proge- 
ny tests to estimate breeding values of selections made 
each generation. Offspring from the selected parents are 
planted in randomized, replicated tests that are usually 
established in a number of different years and field site 
locations. Parents whose progeny perform better, on the 
average across all tests, are considered genetically superi- 
or and the parental rankings are used in numerous ways 
to enhance genetic progress. 

Because the parental rankings from these progeny 
tests are critical to genetic progress, the predicted breed- 
ing values must be precise and accurate. However, often 
in forestry (Cotterill et al. 1983; Lowe et al. 1983; White 
et al. 1986), the analyses are complicated, because the 
data are messy 1: (1) often, only a subset of the parents are 
represented in a given test; (2) parents are represented in 
different numbers of tests; (3) tests are measured at differ- 
ent ages; and (4) tests vary dramatically in the level of 
precision. 

While many analytical approaches have been used in 
forestry to develop parental rankings from these types of 
messy data, most (if not all) have treated breeding values 
as fixed effects to be estimated from the data (class I 
model of Eisenhart 1947) rather than as random effects. 
The data from a given test are often transformed in one 
or two ways prior to combining data across tests 
(Hatcher et al. 1981; Lowe et al. 1983; White et al. 1986). 
Commonly, an estimated environmental mean is sub- 
tracted from the data in an attempt to adjust for field 
location and year effects that differ from test to test and 

The term "messy" derives from "Analysis of Messy Data" 
(Milliken and Johnson 1984) 
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the da ta  are then s tandardized  in an  a t tempt  to achieve 
similar  or equal  var iances a m o n g  family means  in all 
tests. These s tandard  scores for a given paren t  are then 
averaged over all tests in which that  pa ren t  is represented 
(Hatcher  et al. 1981; Cotteri l l  et al. 1983; Lowe et al. 
1983). This approach  results in all tests and  measu remen t  
ages having the same relative weight in de te rmin ing  pa-  
rental  rankings  an d  the var iance a m o n g  averaged scores 
will be smaller  for parents  represented in more  progeny  
tests (White et al. 1986). 

Dai ry  cattle breeders, also faced with messy p rogeny  
test data, developed analyt ical  approaches  that  consider  
breeding values as r a n d o m  effects to be predicted rather  
t han  fixed effects to be est imated (Henderson  1963, 1973, 
1977, 1984). These analyt ical  methods,  Best L inear  Pre-  
dic t ion (BLP) and  Best L inear  Unb ia sed  Predic t ion  
(BLUP),  have m a n y  desirable propert ies  in some situa- 
tions. However,  to our  knowledge these methods  have 
not  been widely used outside of an ima l  breeding and  
most  appl icat ions  wi thin  an imal  breeding have assumed 
homogeneous  genetic and  error  variances (Hill 1984; 
Gar r ick  and  Van Vleck 1987). 

This paper  describes the appl ica t ion  of B LP  for pre- 
dict ing parenta l  breeding values in an  opera t iona l  slash 
pine (Pinus elliottii var. elliottii) improvemen t  p rogram in 
the southeas tern  Un i t ed  States. BLP is the selection in- 
dex first used for p lants  and  animals  by Smith (1936) and  
Hazel  (1943), respectively. However,  as c o m m o n l y  ap- 
plied, selection index assumes equal  a m o u n t s  and  qual i ty  
of in fo rmat ion  for each paren t  and  a single vector  of 
weights are developed a n d  used all parents.  BLP,  as ap- 
plied in this paper,  develops a different vector of coeffi- 
cients for each parent ,  specifically to reflect the na tu re  of 
the progeny  test da ta  available for that  parent .  

The specific objectives of this research were to: (1) 
est imate the variances and  covariances needed to imple-  
men t  BLP;  (2) develop best l inear  predict ions of breeding 
values for two i m p o r t a n t  traits (volume growth  and  resis- 
tance to fusiform rust, Cronartium quercum f. sp. fusi- 

forme) for 1,396 slash pine parents  in 364 wind-pol l ina ted  
progeny  tests; and  (3) compare  the BLP breeding value 
predict ions to those developed using an  analyt ical  meth-  
od (averaged s t andard  scores) current ly  c o m m o n  in forest 
tree improvement .  

M a t e r i a l s  and m e t h o d s  

Progeny test data 

The Cooperative Forest Genetics Program at the University of 
Florida directs a cooperative breeding program for 15 private 
corporations and government agencies that are improving slash 
pine for approximately 5 million hectares of timberlands in the 
lower coastal plain in Florida, Georgia and Alabama. Mass 
selection of superior trees growing in natural stands began in the 
1950's with emphasis on volume growth, tree form and freedom 

from disease (Goddard 1980). After each cooperator made 
50 200 selections, scions from these genotypes were grafted into 
seed orchards to produce improved seed for operational re- 
forestation. 

Wind-pollinated seed from seed orchards was used to estab- 
lish 364 progeny tests from 1960 to 1980. Each test is a random- 
ized complete block design with 5 10 trees (average=8) from 
each wind-pollinated family represented in a row-plot within 
each block. The number of parents represented in a given test 
ranges from 5-160 (average = 33) and the number of blocks from 
3-10 (average=6). The number of trees planted in each test 
ranges from 500-2,400 (average= 1,600) and survival averaged 
78% at 15 years. 

At measurement ages of 5, 10 or 15 years, each tree was 
scored for the presence (score = 1) or absence (score = 0) of fusi- 
form rust and measured for height and diameter at breast height 
(DBH). The height and DBH measurements were converted into 
an estimated volume for each tree (Goddard and Strickland 
1968). A linear model for a measured trait at a given age is: 

Xijk l  = ~ + Ei + Bij + fk + felk + Pijk + eijkl ( l )  

where 

# = 

E i = 

Bij = 

f~ = 

feik 

Pijk = 

a general mean, 
fixed effect of i th test environment, i = 1, 2 . . . .  t, 
fixed effect ofj th block in i th test, j = 1, 2 . . . .  b i, 
random effect of k th family, k = 1, 2 . . . .  Pl, E (fk) = 0, 
Var (f0 = o~ 2 , 
random interaction of k th family and i th test, E(fe~k)=0, 
Var (feJ = a2o, 
random plot error of k th family in jth block of i th test, 
E (Pijk) = 0, Var (Plj0 = ap 2, and 

eijkl = tree error of 1 th tree in ijk th p lo t ,  - 2 E(eijkl ) --  0, V a r  (eijkl) = fie" 

The covariances between all effects are assumed to be zero. E~ 
and B~j are treated as fixed effects since the purpose here is to 
compare and rank families and it is necessary to adjust family 
means for the specific fixed set of blocks and test environments 
in which they occur (see Henderson 1973). Wind-pollinated fam- 
ilies are considered half-sib families. 

Computation of best linear predictions 

We wish to use y, the n • 1 vector of observed data records from 
wind-pollinated progeny tests to predict g, a non-observable 
2p x 1 vector of two breeding values (volume growth and rust 
resistance) for each of p parents. The derivation of BLP does not 
require that the exact form of the joint distribution between y 
and g be known, but assumes we know the following first and 
second moments (Henderson 1963, 1973, 1977, 1984): 

E(y) = ~t, the expected value of the n • 1 vector of data 
records, 

Cov (y, g') = C, an n • 2 p matrix of genetic covariances between 
the observed data and the breeding values being 
predicted, and 

Var (y) = V, an n • n matrix of variances and covariances 
among the observations. 

If these parameters are known and only linear functions of the 
observed data records are considered, then the solution that 
minimizes error variance of predictions, E (g i -  g~)2, among the 
class of all linear functions is: 

= C' V ~ (y--~t). (2) 

Because C is the covariance between g and y and V is the 
variance of y, C' V-1 is, heuristically, coy(g, y) "divided by" 



var(y) and can be thought  of as multiple regression coefficients 
relating y to g (Thompson 1979). A different set of coefficients is 
developed for each parent depending upon the exact ages, preci- 
sions and number  of tests that  the parent 's offspring are planted 
in. The statistical properties of these predictions are well- 
documented, assuming that  the first and second moments are 
known parameters (Henderson 1973, 1977, 1984); in practice, 
estimates of these parameters are used in the computations. 

In our situation, parents whose breeding values are being 
predicted are assumed unrelated and observed progeny test data 
from a parent contribute information about  only that  parent 
(since the progeny are considered a maternal  half-sib family). 
Therefore, the V matrix is block diagonal and the C matrix 
contains non-zero elements only when progeny test data are 
from the corresponding parent being predicted (White et al. 
1986). Thus, observations on family k do not contribute to 
breeding value predictions of family k' and breeding values were 
computed individually for each of the 1,396 parents from a pro- 
gram written in SAS Proc Matrix (SAS Institute 1982) as fol- 
lows: 

I~k = C'k Vk -1 (Yk--~k) (3) 
where 

gk = a 2 x 1 vector of breeding value predictions for two 
traits (rust and volume) on the k th parent, and 

C~, V k, Yk are the portions of the respective matrices or vectors 
from Eq. (2) that  correspond to the k th parent. 

The estimated variance among predicted breeding values was 
calculated for each of the two predicted breeding values for each 
parent as (Henderson 1973, 1984): 

Var (g)k = C~ Vk- 1 Ck (4) 

Defining the g and y vectors 

For the gk vectors, we chose to predict parental breeding values 
for rust resistance at 5 years of age (BLPRUST) and for tree 
volume at 15 years (BLPVOL). Breeding values for both traits 
are predicted in the units of measurement (untransformed) and 
are predicted as deviations from an unimproved population 
mean of zero [that is, E (g)= 0]. 

The data records in the Yk vectors could have been individu- 
al tree measurements, plot means (the average of all trees from 
a given family within a block) or family means (the mean of all 
plot means of a given family within a test). We chose to use family 
means as records for the y vector because: (1) for many of the 364 
progeny tests, this was the only information in machine readable 
form; (2) little information is lost, since in our tests survival was 
generally high and the number  of missing plots low; (3) rust is 
scored as a Bernoulli trait and family means based on approxi- 
mately 50 trees will be approximately normally distributed; and 
(4) computations are much more tractable (13,630 records repre- 
senting family means for two traits from 364 tests instead of 
approximately 1 million individual tree records). 

Thus, the assumed linear model for each element in a Yk 
vector is: 

Pi.k ei.k. 
Yik = Xi.k. = a + E i + fk + feik + ~ - -  + - -  (5) 

o l  m ik  

where the dot notat ion indicates summation over that subscript, 
Yik is the family mean for the k th family in the i th test, b i is the 
number  of blocks, mik is the number  of trees in the k th family, all 
other terms are defined in Eq. (1), and block effects sum to zero. 

The n k family means in each Yk vector are ordered with the 
first two records being family means for volume and rust in the 
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first progeny test. If a progeny test was measured at more than 
one age (5, 10 or 15 years), only the oldest data were used. 

Estimat&g the f i xed  effects, ~t k 

The fixed effects are assumed known in BLP and in our case are 
associated with the effects of test environments. These are used 
to express the n k family means, Yk, as deviations from the test 
means, ~q, in Eq. (3). An ordinary least squares estimate of the 
test environment average for each progeny test was obtained by 
averaging across all family means and the means of the one to 
four extra wind-pollinated families (called genetic check lots) 
that  were standard across most progeny tests (White et al. 1986). 

Defining the C k and V k matrices 

Each element of an n k x 2 C k matrix is a covariance between an 
observation Yi~, and an unobserved breeding value, g~, where 
the superscripts indicate that  these may be for the same (a = b) 
or different traits. Because the breeding values are unobservable, 
the covariances must be calculated by a combination of statisti- 
cal estimation and genetic theory. First, the linear model from 
Eq. (5) is substituted for Y~'k and since all non-genetic terms are 
uncorrelated: 

cov (y~,k, gb) = COV(~, gb). 

Then for a genetic model that assumes that  wind-pollinated 
families are maternal half-sib families, the family effects represent 
half the breeding value of the common parent, _ 1 a ~ - ~ g k  and: 

cov (Y~k, g~) = 12 COV (g~,, gb). 

When a -- b, then the covariance is one-half of the additive genet- 
ic variance of the trait and when a # b, then the covariance is 
one-half the additive covariance between traits a and b. 

The n k • n k V k matrix for each parent contains variances and 
covariances among its observed family means. There are three 
distinct types of elements (see White et al. 1986 for details): 

(1) The diagonal elements are variances of family means for 
the six different measured traits (volume and rust at three ages); 

(2) One type of off-diagonal element is the covariance of 
family means between rust and volume measured on the same 
trees in the same test (this corresponds to a type A covariance of 
Burdon 1977); and 

(3) Other off-diagonal elements are covariances of family 
means for the same or different traits measured in different tests 
(type B covariances). 

All three types can be expressed in terms of the linear model 
in Eq. (5) (White et al. 1986). Because only genetic effects are 
common between family means measured in different tests, the 
type B covariances are identical to those needed for C k matrices. 

Estimating elements o f  the C k and V k matrices 

Whereas the fixed effects for both rust and volume were esti- 
mated for each of the 364 tests, the variances and covariances for 
the C k and V k matrices were estimated from a subset of 28 of the 
tests. All 28 had measurements at ages 10 and 15 years, and 18 
had measurements at 5 years. These estimates were then applied 
to all other tests in the three steps described below. First, to 
estimate variance components, each of the 28 tests was subjected 
to an unweighted analysis of plot means for both  rust and 
growth at each age (Snedecor and Cochran 1967, p475). 
Estimates of within-plot variances were calculated from the indi- 
vidual tree measurements and divided by the harmonic mean to 
put them on a plot mean basis. SAS Type I observed mean 
squares (Freund and Littell 1981) were then equated to their 
expected values and the resulting system of equations solved for 
the estimated variance components. This is analogous to Hen- 



722 

derson's Method III (Milliken and Johnson 1984, p 231). Prelim- 
inary analyses indicated that for tests with rust incidences be- 
tween 10% and 90%, arcsin transformations of the rust plot 
means did not materially affect the relative values of variance 
components for rust (see Rockwood and Goddard 1973; Sohn 
and Goddard 1979 for similar results) and no transformations 
were made. 

Second, estimates of the variances of family means for each 
trait-age combination were then obtained for each of the 28 tests 
by assuming that all tests had 6 blocks and 8 trees per family in 
each block [b i=  6 and mik =48 in Eq. (5)]. Most tests do not 
deviate much from these average values and this assumption of 
constant test design greatly simplified estimation. Thus, 

Var (Yik) = Var(~i.k. ) = ~ + ~p2/6 + #~/48 (6) 

where terms are defined in (1) and (5) except tr2= var(fk+feik ). 
Type A covariances of family means for the V matrix were 

estimated similarly by conducting analyses of covariance be- 
tween rust and volume for each of the 84 age-test combinations. 
SAS Type I cross products from multivariate analyses of vari- 
ance were equated to their expected values to estimate covar- 
lance components. To estimate Type B covariances of family 
means, tests that contained common families were paired and 
covariances among family means obtained for all possible pairs 
of traits and ages. 

Finally, it was apparent from initial analyses that variances 
and covariances varied dramatically both from age to age and 
across the 28 tests at a given age. Thus, the assumption usually 
made in animal breeding (Henderson 1984; Hill 1984; Garrick 
and Van Vleck 1987) of homogeneous second moments across all 
tests was not appropriate, and we developed linear regression 
equations from these 28 tests to predict the second moments as 
functions of easily measured independent variables (the regres- 
sors in Table t) that would be available for all 364 tests. Then for 
each test and pair of tests, the elements needed for the C k and V k 
matrices could be predicted from the measured independent 
variables. 

Many different transformations and re-expressions of these 
regressors were tried in an attempt to linearize relationships and 
homogenize variances (Mosteller and Tukey 1977). Both un- 
weighted and weighted (by the number of families in each test) 
regressions were used depending upon whether the number of 
families was inversely proportional to the variances of the obser- 
vations. Screening was done with all-possible-combinations re- 
gression and then the most promising models (high R 2 and 
biologically interpretable) were subjected to further testing. To 
be adopted as a final predictive equation, a model had to be 
biologically interpretable, be significant at P =0.01, and have 
each regressor in the model significant at P = 0.05. After detailed 
testing of each model over the ranges of the regressors, limits on 
either predictions or regressors were sometimes specified. 

Before modeling, both type A and type B covariances were 
transformed to family mean correlations by dividing by the 
appropriate standard deviations of family means and models 
were fit to the correlations. The modeling of correlations was felt 
more appropriate because they are bounded by - 1 and l. The 
predicted type A and B correlations for each pair of tests were 
then multiplied by the square roots of predicted family variances 
for those tests to obtain predicted covariances. 

Target planting environments were specified for prediction 
of breeding values because the genetic expression of both rust 
and growth varies with the test environment (Table 2). These 
specifications of target environments were used to calculate 
elements of the Ck matrices that require estimates of the covar- 
iance between the breeding value in the specified target environ- 
ment and the observed family means in their test environments 
(White et al. 1986). For 15 year volume, the target environment 

Table 1. Definitions and abbreviations of independent variables 
used in building regression models 

Abbreviation Definition 

R 
RDIF 

RIMS 

RSUM 

V 

VCV 

VCVSUM 

VDIF 

VIMS 

VSTAN 

mean rust infection level of a given test, 0< R< 1 

absolute value of the difference in rust between 
two tests, = abs (R i -  Ri, ) 
block by family interaction mean square from 
an analysis of variance of plot means for rust 
in a given test 

sum of mean rust infection levels for a pair of 
tests, = (R i + Ri, ) 
mean volume of a test, dm 3 

coefficient of variation of a test for volume, 
= (sqrt (VIMS))/V 

sum of volume coefficients of variation for a 
pair of tests, = VCV~ + VCV~, 

absolute difference of standardized volumes 
for two tests, = abs (VSTAN~- VSTAN~,) 

block by family interaction from an analysis of 
variance for volume of a test 

mean test volume expressed as a standardized 
deviate from the overall mean for that age, 
so for each age, the mean volumes from the 28 
tests were standardized to have mean = 0 and 
variance = t 

for predicting breeding values was chosen to be that of average 
test volume and CV, while for rust the target environment was 
chosen to be that which would have an average rust infection 
level of 50% if unimproved seedlings were planted. 

Results and discussion 

Estimation of  second moments 

Regress ion models  deve loped  f rom the subset  of  28 test 

show that  specific es t imates  of  the second m o m e n t s  vary  

substant ia l ly  for different tests and  pairs  of  tests (Table 2). 

This  a p p r o a c h  treats  a single trai t  such as vo lume  g rowth  

at 5 years old as mul t ip le  traits when  expressed in mult i -  

ple test env i ronmen t s  (Burdon  1977; G i a n o l a  1986). 

F o r  v o l u m e  growth,  var iance  of  family means  was 
great ly  influenced by test age and  to lesser extents  by the 

average  vo lume  of the test wi th in  an  age class and  its 
coefficient of  va r ia t ion  (Mode l  1, Table  2). Thus,  the esti- 

ma ted  var iances  of  family means  for v o l u m e  to use on  the 

d iagona ls  of  V k matr ices  vary  by as m u c h  as 50,000 fold, 
depend ing  upon  the age and  character is t ics  of  the tests in 
which the family means  are observed.  As is c o m m o n  in 

the biological  sciences (Snedecor  and C o c h r a n  1967), 

var iances  for v o l u m e  increased dramat ica l ly  as the age 
and therefore m e a n  vo lume  of the test increased (Table 2). 
Coefficients of  va r ia t ion  for v o l u m e  g rowth  were similar  
across age classes (0.26, 0.23 and 0.19 for 5, 10 and 15 
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Table  2 .  Back-transformed regression models and their fit statistics for estimating the second moments needed for the C k and V k 
matrices; all models are significant at P=0.001 and the reported R 2 values are for the final back-transformed model accounting for 
the imposed limits; abbreviations for regressor variables are defined in Table 1 

Model no. and Age Mean Regression model Imposed R 2 n b 
dependent variable a limits 

1 Variance of family, all 0.78 76 
means for volume 5 1 3.17 [10 exp (80.53 + 2.89 (VCV) 0.02 < S' < 4.00 
(dm 3) - 83.04 (V e x p -  0.01))] 

10 85 3.17 [10 exp (80.90 + 1.40 (VCV) 2.41 _< ~, < 280 
- 83.04 (V e x p -  0.01))] 

15 600 3.17 [10 exp (81.14 + 0.93 (VCV) 32.1 < ~'_< 1350 
- 83.04 (V exp - 0.01))] 

2 Variance of family, all 0 .015 0.00355+0.06517(R)-0.06296(R 2) 0.1<R<0.9 0.56 78 
means for rust -0.4750 (RIMS) + 1.9715 (R)(RIMS) 0.001 < ~,_< 0.025 
[(%/100) z] - 1.9048 (R 2) (RIMS) 

3 Type A correlation, 5 0.06 No significant model found NA NA 18 
volume and rust 10 0.13 28 

15 0.14 28 

all 0.50 4 Type B correlation, 0.2471 +0.6414(RSUM)-0.2680(RSUM 2) 0.1 <R<0.9  0.25 316 
rust in two tests -0.5006(RDIF) 

5 Type B correlation, 5:all 0.15 0.7288--1.029 (VCVSUM)-0.0931 (VDIF) 0.00<9 0.20 115 
volume in two tests 

6 Type B correlation, 10:10 0.34 0.8213-0.6924(VCVSUM)-0.2110(VDIF) 0.00<~, 0.24 171 
volume in two tests 10:15 0.40 0.8547-0.6924(VCVSUM)-0.2110(VDIF) 

15:15 0.44 0.8700- 0.6924 (VCVSUM)- 0.2110 (VDIF) 

a Models 1 and 2 were used to estimate variances for use on the diagonal of the V k matrices and, in conjunction with correlation 
estimates, for estimating covariances 
b The number of observations, n, is less than 84 (28 tests x 3 ages) in models 1 and 2 because of missing measurements at age 5 

years, respectively), but varied dramat ical ly  within age, 
classes (especially within the 5 year age class where CVs 
ranged from 0.13-0.50). The models  predict  that  more  
variable tests (higher CVs) within an age class have higher 
variances of family means and this effect is most pro-  
nounced in the 5 year age class. In general, tests with 
higher CVs are those that  are more variable due to higher 
environmental  variances (due to a heterogeneous field 
site or other experimental  factors). If the effect of higher 
variances in more variable tests is ignored (i.e., if a con- 
stant variance of family means for volume growth is ap-  
plied to all tests regardless of CV), there will tend to be a 
larger variance among breeding values predicted for pa-  
rents in variable tests; this can lead to errors of selection 
due to the choice of higher ranking parents  represented in 
tests with large environmental  variances (Hill 1984; 
White  et al. 1986). 

Fo r  rust, the variance of family means was affected by 
both the mean level of rust infection in the test and by 
RIMS,  the interact ion mean square for rust infection 
(Model  2, Table 2). As found by others (Sohn and God-  
dard  1979), the variance is a quadrat ic  function of the 
mean rust level with tests of 4 0 % - 7 0 %  rust infection 
having the largest variances. This is expected of family 

means derived from individual  tree Bernoulli scores. The 
quadrat ic  was modified by the RIMS in a manner  similar 
to the influence of CV on the variances for volume 
growth:  tests of a given rust level with higher interact ion 
mean squares (more variable) are predicted to have 
higher variances of family means for rust. 

Several different types of correlat ions had to be mod-  
eled for calculation of covariances needed for the C k ma- 
trices and the off-diagonal elements of the V k matrices 
(Table 2 and "Materials  and methods"). Fo r  Type B rust 
correlat ions (family mean correlations for rust observed 
in two different test environments), the regression models  
predict higher correlat ions when both tests have similar 
levels of rust and both are in the 4 0 % - 7 0 %  range for 
mean level of infection (Model  4, Table 2). Fo r  example, 
when wind-poll inated offspring from the same set of par-  
ents are planted in two different test environments,  the 
predicted correlat ion of family means is 0.65 when both 
tests average 65% rust, but  only 0.32 when the two tests 
have 20% and 80%. 

Fo r  tree volumes in two different tests, the model  
predicts higher type B family mean correlations between 
tests that  are older and have low CVs (Models 5 and 6, 
Table 2). F o r  volume measured in one test and rust infec- 
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tion in another test, no adequate regression models were 
found and the average observed correlation did not sig- 
nificantly differ from 0, which was used. Finally, for fami- 
ly mean correlations between rust and volume measured 
in the same test (Model 3, Table 2), no adequate regres- 
sion models were found, so the average values of the 
correlations observed in the subset of 28 tests (which 
differed significantly from zero) were used for all tests. 

Comparison of BLP breeding values to standard scores 

Using the regression models described above to estimate 
the appropriate second moments in Eq. (3), breeding 
values for rust resistance (BLPRUST) and 15 year 
volume (BLPVOL) were predicted for 1,396 slash pine 
parents. Averages of the standard scores (Hatcher et al. 
1981; Cotterill et al. 1983) for both rust (SSRUST) and 
volume (SSVOL) were also calculated for each parent for 
comparison. BLPVOL and BLPRUST are expressed in 
the units of measurement (dm 3 and %, respectively), 
while standard score averages (hereafter called standard 
scores) are unitless. 

For the 1,396 parents, there was a fairly good corre- 
spondence between the breeding value predictions and 
the standard scores (rZ= 0.73 for BLPVOL, SSVOL and 
r 2 =0.83 for BLPRUST, SSRUST). This indicates that 
73% of the variance in the 1,396 parental breeding value 
predictions for volume could be accounted for by the 
corresponding averages of standard scores. The level of 
correspondence decreases at the extremes of the distribu- 
tions (high and low breeding values) and this is critical to 
selection programs choosing elite parents (high breeding 
values). 

To examine the influence of different selection intensi- 
ties on gain from using BLP breeding values versus stan- 
dard scores, we calculated the expected relative genetic 
gain from use of the two methods as follows. The breed- 
ing values developed from BLP are estimates of genetic 
value, not phenotypic value; that is, the breeding value 
predictions are regressed back towards the mean geno- 
typic value (zero in our case) by the multiple regression 
coefficients (CV-l) applied to the observed (phenotypic) 
family means (Thompson 1979). As such, for certain types 
of selection the breeding value predictions of the parents 
selected can simply be averaged to estimate the expected 
genetic gains. A common practice in forestry is that a 
certain number of the very best parents are grafted into 
a seed orchard from which wind-pollinated seed will be 
used for operational reforestation (Namkoong et al. 
1966; Shelbourne 1969). If parents are selected for the 
orchard based on BLP breeding values, the expected 
breeding value of trees grown from orchard seed (i.e., the 
expected genetic gain) is the average of BLP breeding 
values of parents in the orchard (for a monoecious species 
assuming equal representation and fecundity of all par- 

ents). If parents for the orchard are selected on the basis 
of having the top standard scores for a particular trait 
instead of on predicted breeding values, the expected ge- 
netic gains will be less if BLP more efficiently ranks par- 
ents according to true breeding values. However, ex- 
pected progress from selection based on standard scores 
can still be estimated by averaging BLP breeding values 
of the parents actually selected. Then, for a given selec- 
tion intensity, we define expected relative gain as ex- 
pected genetic gain from parental selection based on 
standard scores divided by expected genetic gain from 
selection based on breeding value predictions. Note that 
this approach implicitly assumes that BLP is more effi- 
cient than standard scores. 

For 15 year volume growth, selection of the top half 
of the parents (699 out of 1,396) based on their standard 
scores, SSVOL, results in 91% of the expected genetic 
progress compared to selection on the basis of BLP 
breeding values, BLPVOL (Fig. 1). As selection intensity 
increases, the disparity increases and for a selection of the 
top 1%, selection using SSVOL is only 55% as efficient 
as selection on the basis of BLPVOL. Thus, for programs 
and selection strategies applying low to moderate selec- 
tion intensities, both methods of ranking parents result in 
similar expected genetic gains; however, the methods div- 
erge in parental rankings and expected genetic progress 
as programs intensify. 

Another type of comparison between the two analyt- 
ical systems is how each deals with the three main sources 
of "messiness" in the progeny test data: different test 
precisions, different test ages and parental representation 
in different numbers of tests. To demonstrate these effects 
for 15 year volume, we modeled the variance among 
predicted breeding values [estimated for each parent's 
BLPVOL from Eq. (4)] as a function of test age, precision 
(VCV) and the number of tests. The estimated variance 
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Fig. l. Relative genetic gain efficiency from parental selection 
based on standard score versus BLP breeding values for different 
levels of selection intensity 
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Fig. 3. For volume, the average number of progeny tests in 
which parents are represented for different levels of selection 
intensity based on standard score (SSVOL) and predicted breed- 
ing values (BLPVOL) 

among predicted breeding values is larger when parents 
are in older, more precise and larger numbers of progeny 
tests (Fig. 2). That is, when the quality and quantity of 
data are high, BLP tends to spread out the predictions 
more so that there will be more very high and very low 
breeding value predictions. If parents are ranked on the 
basis of these predictions, a larger fraction of the higher 
ranking parents will be those with higher quality and 
quantity of test data (White et al. 1986). For comparison, 
note that by virtue of the method of calculation, standard 
scores treat all ages and precisions of test data equally. 
Furthermore, the trend with numbers of tests is opposite 
to that of BLP (Fig. 2) and the use of standard scores will 
result in a larger fraction of the high ranking parents 
being represented in fewer progeny tests. 

725 

That the impact of the effects with numbers of tests is 
magnified when selection intensity is high is shown by 
examining, for volume, the average number of progeny 
tests in which parents are represented for various selec- 
tion intensities (Fig. 3). At a low selection intensity of 
50%, the 699 parents retained are in an average of about 
4.2 progeny tests, regardless of whether the selection is 
based on SSVOL or BLPVOL. However, if the top 1% 
of the parents are selected based on standard scores, 
those 14 parents are in an average of only 2 progeny tests. 
When parents are in fewer tests, the variance among 
standard scores is larger and thus it is more likely to find 
very high ranking parents. This is a property of ordinary 
least squares estimators that have similar characteristics 
as standard scores (White et al. 1986). Just the opposite is 
true for BLP, which tends to result in the highest (and 
lowest) ranking parents being better tested. When the top 
1% of the parents are selected based on BLPVOL, those 
14 parents are in an average of 6.6 tests. Cotterill et al. 
(1983) noted the same trend with their use of shrunken 
least squares. Also, the same results have been observed 
in dairy breeding where sires with fewer progeny are 
more likely to be selected using least squares estimates of 
sire breeding values, but the reverse is true using BLUP 
predictions (Henderson 1973). 

General discussion 

B L P  versus s tandard  scores 

It is often difficult to quantify the advantages and disad- 
vantages of two different metholologies. Sometimes di- 
rect analytical methods are available, but more often the 
methods are compared by either simulation techniques 
or by application of both methods to specific data sets 
(Henderson 1975). By employing the latter technique, we 
have implicitly assumed that BLP is superior to the use 
of standard scores. This is in fact true if C, V and �9 are 
exactly known, because BLP minimizes the error vari- 
ance of predictions among all linear combinations of the 
family means (Henderson 1973, 1977, 1984). Further, if 
the joint distribution between the breeding values being 
predicted and the observed family means is multivariate 
normal, then BLP predictions are also best predictions, 
i.e., the lowest error variance of prediction among all 
possible combinations of the observed family means 
(Henderson 1973, 1977, 1984). 

In most, if not all cases, C, V and ~t are estimated 
rather than known and the BLP predictions are only 
approximate. In general, rankings based on single trait 
predictions are relatively insensitive to errors involved in 
estimating C and V (Henderson 1984). Extrapolation 
from previous simulation studies of selection indexes 
(Harris 1963, 1964; Sales and Hill 1976; Bulmer 1985) 
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indicates that for the levels of genetic parameters and 
sample sizes in our data base, actual efficiency losses in 
gains from selection appear to be less than 2% below that 
expected using the optimal index. However, work is 
needed on efficiency loss when the C and V parameters 
are estimated by regression models as in our case (the 
estimation of fixed effects, ~, is discussed in the next sec- 
tion). 

Random (BLP) and mixed (BLUP) models 

While both BLP and and BLUP assume that genetic 
values are unobservable random effects, BLP assumes the 
fixed effects are known constants and B L U P  (and the 
equivalent solutions to the mixed model equations) 
estimates these fixed effects simultaneously with the pre- 
diction of the random genetic effects (Henderson 1973, 
1977, 1984). BLUP has been the overwhelming method of 
choice in dairy breeding (for which the technique was 
developed and has been refined) because fixed effects 
(herd, year and season effects) are, for several reasons, 
difficult to estimate precisely and unbiasedly: (1) subclass 
cell means are often more than 90% missing; (2) genetic 
trends in the data (due to selection progress) make con- 
temporary or herdmate comparisons biased; and (3) 
records are subject to culling such that there is more data 
on better animals (Henderson 1973, 1974; McDaniel 
1974; Iloeje and Wilcox 1981; Wilcox and Delorenzo 
1983). 

For  our slash pine progeny test data, we believe that 
ordinary least squares (OLS) estimates of fixed effects 
(test environmental means) are both unbiased and pre- 
cise. First, because the parents represented on each site 
approximate a random sample from the inference popu- 
lation and 2 - 6  average genetic checklots are included at 
every location, the estimated test environment mean 
should be unbiased. Secondly, on the average site with 33 
parents and 4 checklots, the error variance of the esti- 
mated test environment mean is approximately 2% of 
that associated with a given family mean. 

Both BLP and BLUP assume that C and V are 
known and since this is never the case in actual applica- 
tion, both techniques are approximations to BLP and 
BLUP. By using OLS estimates of fixed effects, we could 
allow complete generality in the C and V matrices and 
still keep the computations tractable. This was especially 
important for our data since both variances and covar- 
iances were quite heterogeneous. 

Multiple trait best linear prediction 

Our formulation of BLP treats a given variable observed 
on different sites as different traits. As such, the variance 
of family means at the two different sites may differ and 
the correlation of family means between the two sites is 

a measure of genotype by environment interaction (Bur- 
don 1977; Gianola 1986). This is formally incorporated 
into the model by the use of the predictive regression 
models in Table 2. This multiple trait approach means 
that selection based on predicted breeding values is indi- 
rect selection (Falconer 1981). 

The long generation time in forestry makes progeny 
testing to harvest age (25-100 years) extremely expensive 
and time consuming. Thus, there is tremendous economic 
pressure to use data from young field progeny tests 
(Lambeth 1980; Lambeth et al. 1983) and also to develop 
controlled environment tests that are predictive of field 
performance at harvest (Robinson and van Buijtenen 
1979; Waxier and van Buijtenen 1981; Williams 1987). A 
big advantage of BLP and BLUP is that diverse sources 
of data can be directly incorporated into predictions. 

We believe that as tree improvement programs ma- 
ture, diverse sources of data (from controlled environ- 
ment tests, previous generations and other relatives) will 
become more commonplace and that the parents being 
evaluated will have divergent quality and quantity of 
data. BLP and BLUP are particularly well suited to han- 
dle these situations and will probably find more use in 
forest tree breeding. 
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